Inference in Practice Sections 18.1, 18.3

Lecture 34

Robb T. Koether

Hampden-Sydney College

Wed, Mar 23, 2016

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

 The hypothesis testing procedure is valid provided a number of conditions are met.

- The hypothesis testing procedure is valid provided a number of conditions are met.
- The sample is a simple random sample.
 - Undercoverage bias (also called selection bias).
 - Response bias.
 - Nonresponse bias.

- The hypothesis testing procedure is valid provided a number of conditions are met.
- The sample is a simple random sample.
 - Undercoverage bias (also called selection bias).
 - Response bias.
 - Nonresponse bias.
- The sample size is small relative to the size of the population (n < 5% of population).

- The hypothesis testing procedure is valid provided a number of conditions are met.
- The sample is a simple random sample.
 - Undercoverage bias (also called selection bias).
 - Response bias.
 - Nonresponse bias.
- The sample size is small relative to the size of the population (n < 5% of population).
- If the sample size is small (n < 30), then the population must have a normal, or nearly normal, distribution.

- The hypothesis testing procedure is valid provided a number of conditions are met.
- The sample is a simple random sample.
 - Undercoverage bias (also called selection bias).
 - Response bias.
 - Nonresponse bias.
- The sample size is small relative to the size of the population (n < 5% of population).
- If the sample size is small (n < 30), then the population must have a normal, or nearly normal, distribution.
- The population standard deviation σ must be known.

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

Simple Random Sample

- The sample is a simple random sample.
- This is the most difficult requirement to guarantee.
- See article on the Michigan primary survey.

The Michigan Primary

- Pollsters underestimated
 - Youth turnout.
 - Sanders's dominance among young voters.
 - The number of independent voters who would participate in the primary.
 - Sanders's support among black voters.
- Pollsters missed a late break to Sanders by not doing enough polling after Sunday.
- Some Clinton supporters chose to vote in the Republican primary.
- Pollsters had little recent history to work with.
- This is an outlier, a perfectly rotten combination of bad luck and bad timing.

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

Sample Size vs. Population Size

- The sample size is small relative to the size of the population (n < 5% of population).
- This is generally not a problem because populations are usually enormous.
- However, if a population is not very large, then additional factors (which we will not discuss) must be taken into account.

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

Normal Population

- If the sample size is small (n < 30), then the population must have a normal, or nearly normal, distribution.
- There is a standard way to check for normality.

Normal Population

- If the sample size is small (n < 30), then the population must have a normal, or nearly normal, distribution.
- There is a standard way to check for normality.
- Given the sample size, a set of "expected z-scores" is produced for a sample of that size from a normal population.
 - 68% fall within 1 standard deviation.
 - 95% fall within 2 standard deviations.
 - Etc.

Normal Population

- If the sample size is small (n < 30), then the population must have a normal, or nearly normal, distribution.
- There is a standard way to check for normality.
- Given the sample size, a set of "expected z-scores" is produced for a sample of that size from a normal population.
 - 68% fall within 1 standard deviation.
 - 95% fall within 2 standard deviations.
 - Etc.
- These expected z-scores are compared to the actual z-scores.
- If they are "reasonably close," then we have sufficient evidence that the population is normal.

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

- The population standard deviation σ must be known.
- We typically do not know that population standard deviation σ .

- The population standard deviation σ must be known.
- We typically do not know that population standard deviation σ .
- However, we do know the sample standard deviation s.

- The population standard deviation σ must be known.
- We typically do not know that population standard deviation σ .
- However, we do know the sample standard deviation s.
- And s is an estimator of σ .

- The population standard deviation σ must be known.
- We typically do not know that population standard deviation σ .
- However, we do know the sample standard deviation s.
- And s is an estimator of σ .
- For large samples ($n \ge 100$), s estimates σ very well.

- The population standard deviation σ must be known.
- We typically do not know that population standard deviation σ .
- However, we do know the sample standard deviation s.
- And s is an estimator of σ .
- For large samples ($n \ge 100$), s estimates σ very well.
- For smaller samples, we must take additional steps (Chapter 20).

- Inference in Practice
 - Simple Random Sample
 - Sample Size
 - Normal Population
 - Standard Deviation

Assignment

- Read Sections 18.1, 18.3.
- Apply Your Knowledge: 1, 2, 4, 8, 11.
- Check Your Skills: 19, 20, 21, 25.
- Exercises 30, 31, 36, 38.